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Electromagnetic analyses of attenuation in uniformly curved singly clad
optical fibers usually do not account for the finite cladding radius of the fiber
(References 1 through 3). For many standard fibers, the cladding-to-core-
radius ratio is quite large (at least 20); thus, most analysis techniques assume
that the cladding radius is infinite. When this "infinite” cladding radius
assumption is not used, it is necessary to consider very simplified analyses for
attenuation loss resulting from curvature in optical waveguides with double
or multiple claddings (References 4 and 5). These methods are approximate
and are based on (1) the weak guidance assumption, (2) continuation of wave
functions (Reference 6), and (3) change of the axial phase constant, as the
result of uniform bending. They are applicable to both small and large radii
of curvature.

Since we are interested in applying any analysis of attenuation resulting
from curvature of an optical fiber to the SKYRAY Fiber Optics Project, we
have verified that the above assumptions are acceptable for dealing with a
high-speed fiber payout scenario. It has been shown that at high speeds the
"peel point" radius of curvature may be only a few millimeters. Thus, one of
the primary considerations for any analysis method is its ability to compute
attenuation losses for relatively small bend radii. The method of Section 2 will
handle such small bends.

For the numerical analysis of determining the effect of cladding thickness
on attenuation resulting from curvature, we have used the optical parameters
of four fibers that were payed out in previous SKYRAY field tests. These
fibers are

(1) AT&T dispersion-shifted fiber (DSF)

(2) AT&T tethered vehicle fiber (TVF)

(3) Corning payout fiber

(4) Corning SMF/DS (single-mode fiber/dispersion-shifted)

At the present time, all of the above fibers have a standard cladding
diameter of ~125 um. Assuming mode field diameters on the order of S to 8 pm,
this implies that the cladding-to-core-radius ratio is around 15 to 20. Future
options are tending to lower the cladding diameter to ~80 um (and sometimes
less), resulting in cladding-to-core-radius ratios of 9 or 10. We must be able to
assess whether and how attenuation resulting from uniform curvature will
bc affected by such small ratios.
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Section 2 provides a description of the analysis method for uniformly
curved optical fibers with finite claddings. Section 3 uses the results of
Section 2 to plot cladding thickness versus attenuation with the normalized
radius of curvature as a parameter. Section 4 contains our conclusions and
recommendations.

2. ATTENUATION IN A CURVED SINGLE-MODE OPTICAL FIBER
WITH A FINITE CLADDING THICKNESS

The geometry of a curved fiber with circular cross section and finite
cladding thickness is shown in Figure. 1. The fiber is assumed to have a
constant radius of curvature R, core radius a, and cladding radius b. nj, ng,
and n3 are the indices of refraction in the core, cladding, and outer sections
of the fiber, respectively. Throughout the following, we will refer to the
cladding-to-core-radius ratio as b/a. The actual cladding thickness d is given
by

d=b-a , (1)
and the normalized cladding thickness is
d b
—_=—-1
a a (2>

-~

Following Reference S5, we obtain a simplified power attenuation
coefficient given by

4bx? %  &(b)¥4b)

20(R) =
BV KZ(ya) %

expl-2uldo .
uly %(b) + 6 2(b)] (3)

We can define the variables in Equation 3 as follows:
x2 =n12ky,2 - B2 » (4a)

2,2 2 .
nik;—B° ; nmy>n,

2 2,2
-mk. ; n,<n, ,
B —n3k; 5 n3<ny (4c)
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where x, vy, and o are the transverse propagation constants in the core,
cladding, and outer regions, respectively.

By assuming that a curved fiber can be described as an equivalent straight
fiber with an inhomogeneous refractive index distribution, we obtain

-2 2 2 2bcosd ), 2
(b)= - I (1"‘—_) ’
Y B 2 R ko (5a)
(
n§(1+zt%gs—¢)k§-[52 ; D3>y
5 2(b) =
Bz—n§(1+-2b—(l::s—2)k§ ; N3 <N,
\ s (5b)
RIY-Y’®)] =
3 2.2 i ¢¢2
kon3 cos ¢
u=j
n
Yb ; 0=% ,
L (5¢)
V2 = ko222 (n12 - n2) (6a)
2n
kK =<=
° Ay (6b)

Ao is the free-space wavelength, typically in the 1.3- to 1.6-um range, Kj is a
modified Hankel function of order 1, and B is the axial propagation constant.

Equation 3 must be .ntegrated numerically over the local angle ¢ (see
Figure 1). Note that the upper limit of this integration is not explicitly
defined. This is because the value of ¢, is dependent upon the values of ¢ and
R in certain cases. For large enough values of the bending radius R, ¢, has
the value . However, as R decreases, the averaged transverse propagation
constant &(b) approaches zero. We can define a critical radius for ¢ = O where
o(b) is zero as

2,2
R = 2bn3k°

S (7)
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If 6(b) reaches zero before the integration variable ¢ reaches =, then ¢, must
be defined as

’cos'l[——l-{— ; MR>n
Rcl ’ 3 2

A

%

COS-l [ :I ny <n
{ <

This is the point at which radiation is no longer escaping from the fiber.
When ¥(b) becomes zero at ¢ = 0, we have another critical radius, i.e.,

(8)

. 2bn2k?
e :
e (9)

At Rcz, we have the usual evanescent field becoming a radiation field while it

is still inside the cladding region. When Rc2 is reached, we must use the

curvature loss formula for singly clad fibers (References 3 and 7). For a
single-mode fiber with a single cladding, the cladding radius is assumed to be
infinite and we have

Vo exp [- %;5]

2(1(R) = ’
2V PR 2K 2 ya) (10)

which is not a function of b, the cladding radius.

Once integrated, the attenuation coefficient of Equation 3 can be
presented either in absolute terms in the practical units dB/Km, or it can be
normalized with respect to the attenuation coefficient of a straight fiber. The
only restriction on Equation 3 is that the cladding thickness cannot be very
small. For small values of the cladding thickness, we must integrate a much
more complicated equation consisting of modified Bessel and Hankel
functions (References 5 and 8). Also, we should realize that Equation 3 is
more accurate as the radius of curvature increases.

3. NUMERICAL RESULTS

As mentioned in the previous section, we have several sets of plots
showing the normalized cladding thickness (d/a) versus attenuation with the

4
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normalized radius of curvature (R/a) as a parameter. The attenuation is
computed either in the practical units of dB/km, or it is normalized to the
attenuation loss in a straight fiber, which is given by (Reference 5)

4noyk? exp (-2yb)

20u(e0) = .
V2BKi(ra) [¥ + 671 (a1

As mentioned in the Introduction, we wish to use the optical parameters
of actual fibers involved in high-speed payouts. The first fiber we consider is
the AT&T DSF. It has a mode-field diameter [viewed as the single-mode
analogue of-core diameter in multimode fibers (Reference 7)] of 6.3 + 0.6 pum at
a wavelength of 1.3 um and 7.0 + 0.6 um at a wavelength of 1.55 um. Itis a
depressed cladding fiber (see Figure 2) and has a refractive index difference
between core and cladding (A1) of 0.5 to 1%, where

n;—n

A1= n .
1 (12)

Since it is a depressed cladding fiber, we have assumed n3 > nj, with the worst
case attenuation at n3 =nj. Figure 3 is a plot of normalized cladding thickness

versus normalized attenuation for R/a = 1.0 x 104, 2.0 x 104, and 3.0 x 104 (i.e.,
3.5, 7.0, and 10.5 cm), respectively, at 1.55 pum. Figure 3 shows that at a
bending radius of 3.5 cm, the ratio of attenuation at this radius to that of the
same straight fiber is around 5; whereas, at a bending radius of 7 cm, the
attenuation ratio is less than 1.5. This plot shows also that as the cladding
thickness increases, attenuation resulting from curvature alone goes up. At
1.3 uym with a core radius of 3.15 um and the same values of R/a, we see the
same behavior. Figures 3 and 4 show the substantial increase in attenuation
loss resulting from curvature. Figures 5 and 6 show the same behavior but
now in absolute terms. Comparing Figures 5 and 6, we notice that the
attenuation at 1.3 um with a mode-field radius (core radius) of 3.15 um is much
less than at 1.55 pym with a mode-field radius of 3.5 um for the same cladding
thickness.

Figures 7 through 10 show plots of the AT&T tethered vehicle fiber TVF. It
has a mode-field radius of 2.5 um at the 1.3-um wavelength and a radius of 3.0
pm at the 1.55-um wavelength. Using a slightly larger refractive index
difference of 0.7% (versus 0.5% for the AT&T DSF), we see there is less
variation as a function of cladding thickness for various radius of curvature
values as compared to the AT&T DSF.

Figures 11 through 14 show plots of the Corning payout fiber. This fiber
has an index difference of around 1% and correspondingly smaller mode-
field radii, i.e., 2.75 um at the 1.3-um wavelength and 3 um at the 1.55-um
wavelength. As a result of smaller mode-field diameter coupled with a larger
refractive index difference than in the AT&T fibers, we find that lower values
of absolute attenuation at smaller bend radii are found with this type of fiber.

5
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In Figure 13, when R/a = 1.5 x 103 = 4.12 mm at d/a = 8, we have a computed
attenuation of <0.01 dB/Km. However, note that at the 1.55-um wavelength
with a mode-field radius of 3 pm, the attenuation at d/a = 8 is much worse. In
Figures 13 and 14, we see an instance of the normal field in the cladding
turning into a radiation field for which the "infinite" cladding loss formula
in Equation 10 must now be used. Since this formula is not dependent on the
finite cladding radius b, it gives a constant attenuation in terms of the
cladding thickness once the field begins to radiate.

Figures 15 and 16 show plots of the Coming SMF/DS, which has a Aj of 1%
and a mode-field diameter of 8.1 £ 0.65 pm at the 1.55-um wavelength. This
fiber is designed to operate in the 1.55-pm window. Figure 16 shows this fiber
at a normalized bend radius of R/a = 1000 (4.05 mm). Even for this very small
radius, it has a low attenuation for most cladding thickness values.

Figures 3 through 16 are merely representative of how cladding
thickness affects attenuation loss resulting from curvature. Generally, we
find that reducing the mode-field diameter and simultaneously increasing the
refractive index difference (between nj and ny) will improve the attenuation
loss. In terms of absolute attenuation, the normalized cladding thickness may
be decreased to as little as 7 or 8 and still give small attenuation at small bend
radii (such as occur at the "peel point” in a high-speed payout).

4. CONCLUSIONS

Several general trends can be seen concerning attenuation resulting
from curvature and the effects of a finite cladding thickness.

» The cladding must remain thick enough to ensure that attenuation loss
remains at acceptable levels throughout the wavelength range of operation.

» Attenuation resulting from curvature increases with wavelength.

» As the index of refraction of the outer region decreases (i.e., n3 < ny),
the attenuation loss decreases.

+ Reduction of the core radius (or mode-field radius) coupled with
increase in the refractive index difference enables the attenuation to remain
at acceptable levels for relatively small cladding thickness, even for radii of
curvature in the millimeter range.
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FIGURE 1. Geometry of a Curved Three-Region
Optical Fiber.
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FIGURE 2.
Cladding Fiber.
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